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Abstract

This paper presents an asynchronous integration scheme with local time stepping for transport problems. The concept
consists in associating refresh time tags to the interface fluxes between cells and to the source terms within the cells rather
than to the cell themselves. This scheme is less diffusive numerically than its synchronous equivalent. This method is very
effective in terms of computation time for problems with localized sharp minima in the CFL condition. The method is then
applied to dielectric barrier discharges for aerodynamic flow control.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In many physical systems, multi-scale phenomena and steep gradients make the integration of transport equa-
tions a crucial numerical issue in terms of accuracy and computation time. This is particularly true for the physics
of discharges in gas, where slow heavy species are coupled to fast electrons through Poisson’s equation. The time
scales of the discharge formation are governed by the transport, chemical reactions and dielectric relaxation.

Two types of numerical integration methods are commonly used in the modeling of gas discharge. Fully
explicit methods: such methods require that the time steps satisfy three criterions which are:

� The CFL condition with respect to the fastest velocity (which is typically the electron velocity).
� The stability constraint due to the integration of the kinetic scheme (typically ionization).
� The dielectric relaxation time.
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Explicit schemes give accurate results but at a really expensive computational time-cost.
Semi-implicit schemes: semi-implicit transport-Poisson solvers have been developed with the exponential

scheme (Scharfetter and Gummel). In this method the time step is no longer limited by the CFL conditions
or the dielectric relaxation time [11]. However the scheme is generally quite diffusive and remain first order
accurate. In some cases, the dynamics of the plasma formation is not well reproduced and large errors occurs.
Here, we propose an explicit time stepping technique locally adapted, in terms of the stability condition, for
each species.

Similar approaches have been developed and are briefly discussed below. Berger and Oliver introduced
the adaptive mesh refinement [1] for block-structured meshes in which a time synchronization between
large and fine grids is proposed. This technique has been successfully applied to various physical processes
and particularly to computational fluid dynamics. Local time stepping algorithms have also been studied
in electromagnetic compatibility (EMC) applications. Simplectic schemes (see [2]) or multisymplectic
schemes have been implemented for Maxwell solvers (or more generally in model derived from an
Hamilton’s principle). Thus, the local time steps have to be chosen as a fraction of the global time
step.

Recently a new approach presented by Omelchenko and Karimabadi [3] introduced an asynchronous
scheme for drift–diffusion transport. In this paper we propose a different approach for asynchronous time
stepping by associating independent time tags directly to the interface fluxes between the cells and to the
source terms within the cells. In this approach the cells synchronization is replaced by an interface synchro-
nization for the fluxes. The treatment of the source terms does not require any synchronization. We also chose
to always retain the local CFL condition (no ‘‘idle’’ state or flux capacitor), which leads to a significant numer-
ical diffusion reduction. The critical point for speeding up an asynchronous method in terms of computation
time is the searching algorithm for the most urgent time tag to be treated, and some alternative options are
presented here. From a theoretical viewpoint, Dawson and Kirby showed the convergence of periodically syn-
chronized higher order schemes in [4]. The present paper gives a short proof of the convergence of first order
asynchronous scheme.

We propose an asynchronous, conservative, stable scheme which is computationally attractive for problems
with locally sharp minima in the stability conditions.

The efficient transport/Poisson coupling for an asynchronous scheme is a crucial issue for both accuracy
and computation time in gas discharge modeling. An original filtering technique is proposed here to resolve
this part.

This paper is organized as follows: Section 2 describes the asynchronous scheme in detail and gives elements
of proof of its convergence. Section 3 shows a numerical comparison with a standard explicit synchronous
scheme. This section aims at validating the concept for a simple test case and at illustrating the application
domain of the method. Section 4 focuses on the gas discharge application illustrated with its numerical appli-
cation to dielectric barrier discharge (DBD) for aerodynamic flow control. Followed by the conclusion in Sec-
tion 5.
2. Numerical integration method for the advection equation

2.1. Concept

Explicit integration techniques face a severe time step restriction known as the Courant–Friedrich–Levy
(CFL) condition. For the system to remain numerically stable this condition has to be imposed over the whole
mesh, using classical methods. As a result the integration time step of the system is limited by the minimum of
the CFL conditions all over the domain.

Let us consider a conservation law in 1D for simplicity
on
ot
þ oC

ox
¼ S ð1Þ
C = nv(x) with v(x) P 0 a given advection velocity and S some source term
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In this case the first-order upwind scheme over a regular mesh would be:
nkþ1
i ¼ nk

i � Dt
Dx ðnk

i viþ1
2
� nk

i�1vi�1
2
Þ þ SiDt

tkþ1 ¼ tk þ Dt

(
ð2Þ
ni are the density values at the cell centers xi = iD x, viþ1
2

is the velocity values taken at the cell interfaces
xiþ1

2
¼ iþ 1

2

� �
Dx.

For the standard scheme Dt is the minimum of the CFL condition all over the mesh.
The asynchronous scheme assumes that each flux or source term is updated independently according to a

refresh time tag with respect to a global simulation clock. Over some user defined time step the solution is built
as follows:
nkþ1
i ¼ nk

i � 1
Dx ð
P

p
Dtp

CþCiþ1
2
ðtpÞ �

P
q

Dtq
C�Ci�1

2
ðtqÞÞ þ

P
r

Dtr
SSiðtrÞ

tkþ1 ¼ tk þ Dtoutput

8<: ð3Þ
For the scheme to be stable each local time step is limited by the local value of the CFL condition.

2.2. Algorithm

Each mesh cell has its own value, value time tag, and variation rate. The idea is to store the value of each
term (fluxes or source term) of the variation rate and let them evolve independently:
on
oti

¼ Si �
Ciþ1

2

Dx
þ

Ci�1
2

Dx
¼ onS

oti

þ onCþ

oti

þ onC�

oti
Various time variables are needed: tsimulation is the current discrete simulation time, tn
i is the time tag associated

with the stored value of ni, tCi is the refresh time tag of Ci and tS
i is the refresh time tag of Si.

During the simulation, tsimulation jumps discretely from the most urgent refresh time tag to the next most
urgent.

2.2.1. Initialization

(1) Initialize all density and fluxes.
(2) Initialize all refresh time tags to the initial time.

2.2.2. Proceed until the simulation time is completed

(1) Find the most urgent flux or source term to be refreshed.
(2) tsimulation becomes this most urgent refresh time tag.
(3) Compute the value of the density which variation rate will evolve or which are needed for flux compu-

tation (only a few cells are involved).

� nj ¼ nj þ onS

otj
þ onCþ

otj
þ onC�

otj

� �
ðtsimulation � tn

j Þ
� tn

j ¼ tsimulation

with j 2 [i, i + 1] for first order flux, j 2 [i � 1, i + 2] for second order flux (e.g. MUSCL) or j = i for
source term

(4) Compute the new value of the flux or source term and update its variation rate according to:

� onCþ

oti
¼ �

C
iþ1

2

Dx

� onC�

otiþ1
¼

C
iþ1

2

Dx or onS

oti
¼ Si

(5) Compute the new refresh time tag of this flux or source term according to the local CFL condition or
reaction kinetic tCi ¼ tCi þ DtCFL when updating a flux or tS

i ¼ tS
i þ DtS when updating a source
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(6) If the solution is to be monitored before the next most urgent refresh time tag, build the solution at the
output time tag and store it.
noutput
i ¼ ni þ

onS

oti

þ onCþ

oti

þ onC�

oti

� �
ðtoutput � tn

i Þ for all cells
Notes:

� step 3. serves two purposes: integrating the previous variation before the variation rate is updated and
updating the density values needed for flux or source term computation
� step 6. occurs at user defined time steps when the solution is to be monitored, it has no effect on the actual

density variables within the algorithm. Because the synchronized solution is never present in memory it has
to be constructed at the output time tag.

2.3. Comparison with the original asynchronous scheme (see [3])

Our approach is to always use the local CFL as refresh time steps in order to minimize numerical diffusion
(see 2.7). On the other hand the innovative ‘‘df’’ and ‘‘flux capacitor’’ concepts introduced by Omelchenko and
Karimabadi leads to the definition of a threshold perturbation level below which a perturbation is not
propagated.

Our goal is to develop simulation codes in the field of gas discharges modeling. One of the key phenomena
in this field is electron avalanching which leads to an exponential growth of charged particles. In this precise
context defining a threshold of electron density variation is not a good approach. That is why we compare our
scheme with the original one with the ‘‘df’’ threshold set to zero on an uniform 1D drift problem with no
source over a N cell mesh. This problem is obviously synchronous. The original scheme would call N times
a single cell. For each cell i it means computing both incoming and outgoing fluxes then updating the deriv-
ative of cell i and half derivatives of cells i � 1 and i + 1. In this way the original scheme is conservative. For
the uniform drift problem it means computing 2N fluxes and 2N derivatives for each time step. Our scheme
would call N + 1 times a single flux. For each flux it means computing the flux and two half derivatives (except
at boundaries). This scheme is also conservative (see Section 2.6.1). For the uniform drift problem it means
globally for each time step computing N + 1 fluxes and N derivatives. Consequently the original scheme com-
putes twice more fluxes than this scheme for given time steps. Flux computation represents a heavy CPU
load when using second order method in space such as MUSCL method. Besides when using the local
CFL condition the velocity used to compute the time step corresponds exactly to the one used to compute
the flux.

2.4. Most urgent time tag searching algorithm

2.4.1. Binary tree strategy

Finding the most urgent refresh time tag is a crucial programming issue for the algorithm to be attractive in
terms of CPU time. In [5] Karimabadi et al. showed that for particles in cell simulation the best algorithm
developed so far is a priority queue coded as a heap-sorted dynamically re-sizable array. This implementation
outpaces ‘‘binary trees’’ implementation in a worst case when full sorting a random data set. Because our algo-
rithm does not rely on the ‘‘df’’ and ‘‘flux capacitor’’ concepts introduced in [3] there is no ‘‘wake-up call’’ of
any flux or source term. Consequently in our approach there is no need to perform a full sorting of the time
tags. Furthermore the number of elements to keep sorted is constant and well-known in advance. So, in this
precise case the binary tree may compete fairly with the priority queue. We kept the minimal heap data struc-
ture but coded it as a binary tree. In these conditions the tree remains always almost sorted except for the root
value which has to be replaced within the branches leading to a O(log(n)) algorithm where n is the element
number in the tree. This simple structure can be optimally stored in memory in order to minimize cache misses
(see Fig. 2).
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2.4.2. Discrete time scheduler

Section 2.7 shows that numerical diffusion is minimum when local time stepping is close to the local CFL
condition. An interesting trade-off between precision and CPU time can be made if one accepts that each local
time step is some discrete multiple of a minimal time increment. The idea is to take some upper and lower
bound to the local time steps:
Dt 2 ½Dtmin;mDtmin� ð4Þ
The core data structure of the algorithm is a circular array of m elements of the ‘‘task’’ data type (see Fig. 1).
By circular array we mean that the mth element of the array is ‘‘followed’’ by the first element. A ‘‘task’’ con-
sist in a time tag and a pointer to a pending action stack (fluxes or source terms to be refreshed at this precise
time tag). The current task is identified by using its rank within the array. Finding the most urgent time tag is
then a O(1) operation: accessing the top element of the pending action stack at current task. Replacing the new
event within the scheduler is also a O(1) operation: if the next occurrence of this action is in iDtmin, this action
as to be replaced on the top of the pending action stack located at ‘‘current task + i’’ in the circular array.
When the current task has an empty action stack, then the next task becomes the current task, and the former
current task is freed within the array and becomes a new task at tlast

task þ Dtmin.
The discrete time scheduler is a O(1) algorithm to perform the most urgent time tag searching. Parameters

of the scheduler [Dtmin,m] have to be oversized compared to the time steps of the simulation, for instance in the
gas discharge simulations (see Section 4.3) the scheduler parameters are Dtmin = 5 · 10�14 and m = 2 · 106.

2.5. Memory management

2.5.1. Time tag tree

The basic data structure of the time tag tree is a time tag, a code identifying the element and two pointers to
the branches. The tree is allocated in memory as showed on Fig. 2 so that memory cache miss occurrence is
mitigated. When cache misses occur it is always to the same direction, up or down from the root until the cor-
rect position is reached.
Fig. 1. Discrete time scheduler.



Fig. 2. Tree storage in memory.
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2.5.2. Data storage

Classical synchronous schemes take advantage of cache memory because treatment loop generally follow
data storage of large matrices in memory. This is not the case for asynchronous scheme because they keep
jumping from one area of the matrices to the other. So cache misses for asynchronous schemes are much like-
lier to occur. In order to minimize this phenomenon a data structure as been implemented where all mesh data
is collocated. This means that for single mesh coordinates this structure holds density, density time tag, out-
going flux, variation rate components, source term, etc in the same memory area.

2.6. Convergence of the first-order upwind asynchronous scheme

2.6.1. Conservativeness

Consider the first-order upwind asynchronous scheme with no source term and zero flux at the boundaries
C1

2
¼ Cnþ1

2
¼ 0. The scheme is clearly conservative:
X

ntþDt
i ¼

X
nt

i þ Dt
X onCþ

oti

þ onC�

oti

� �
¼
X

nt
i ð5Þ
because by definition of the algorithm
onC�

otiþ1

¼
Ciþ1

2

Dx
¼ � onCþ

oti

ð6Þ
2.6.2. Stability

With the notations of Fig. 3, the scheme can be written between tq and tq+1 assuming any updates of Ci�1
2
.

n
tqþ1

i ¼ ntq

i �
1

Dx
Dtqntq

i viþ1
2
� sntp

i�1vi�1
2
�
X

n
tpþk

i�1 vi�1
2
Dtpþk � n

tpþkþ1

i�1 vi�1
2
ðtqþ1 � tpþkþ1Þ

h i
n

tqþ1

i P ntq
i 1� Dtq

Dx
viþ1

2

� � ð7Þ
Eq. (7) shows that the local CFL condition insures the positivity of the scheme, so stability as well because it is
conservative.

2.6.3. Consistency under local CFL condition

Suppose that the drift velocity is smooth and the local time steps are proportional to the local CFL con-
dition i.e.:
Dtq ¼
kCFLDx

vi�1
2

’ kCFL

Dx
v

1� ov
ox

Dx
2v

� �
kCFL��0; 1½ ð8Þ



Fig. 3. Time/Space diagram of the asynchronous scheme assuming positive drift velocity.
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Dtp ¼
kCFLDx

viþ1
2

’ kCFL

Dx
v

1þ ov
ox

Dx
2v

� �
¼ Dtq 1þ ov

ox
Dx
v

� �
ð9Þ
For Dx 6 v ox
ov the following condition is imposed on the local time steps: |Dtp � Dtq| 6 Dtq, this means that

three cases have to be considered:

� First case: tp 6 tq 6 tp+1 6 tq+1

n
tqþ1

i ¼ ntq
i �

1
Dtqntq

i viþ1 � sntp
i�1vi�1 � n

tpþ1

i�1 vi�1ðDtq � sÞ
h i
Dx 2 2 2

ntq
i viþ1

2
¼ ntq

i vi þ ni
ov
ox

Dx
2

ntp
i vi�1

2
¼ ntq

i vi � ntq
i

ov
ox

Dx
2
� vi

on
ox

Dx� vi

on
ot

Dtp � s
� �

n
tpþ1

i vi�1
2
¼ ntq

i vi � ntq
i

ov
ox

Dx
2
� vi

on
ox

Dxþ vi

on
ot

s

n
tqþ1

i ¼ ntq
i � Dtq

o nvð Þ
ox
þ vi

on
ot

Dtp � Dtq

� �
DtqDx

s

� 	
n

tqþ1

i � ntq
i

Dtq
þ o nvð Þ

ox
¼ �vi

on
ot

Dtp � Dtq

� �
DtqDx

s

ð10Þ
Hence there is consistency since Dtp � Dtq = O(D tqDx) and s = O(Dtq).

� Second case: tp 6 tq 6 tp+1 6 tp+2 6 tq+1

n
tqþ1

i ¼ ntq
i �

1
Dtqntq

i viþ1 � sntp
i�1vi�1 � Dtpn

tpþ1

i�1 vi�1 � Dtq � s� Dtp

� �
n

tpþ2

i�1 vi�1

h i

Dx 2 2 2 2

n
tpþ2

i vi�1
2
¼ ntq

i vi � ntq
i

ov
ox

Dx
2
� vi

on
ox

Dxþ vi

on
ot

sþ Dtp

� �
n

tqþ1

i ¼ ntq
i � Dtq

o nvð Þ
ox
þ vi

DtqDx
on
ot

Dtp � Dtq

� �
sþ Dtpsþ Dtp Dtp � Dtq

� �� �� 	 ð11Þ
In this case, necessary s 6 Dtq � Dtp so s = O(DtqDx), which gives consistency.
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� Third case: tp 6 tq 6 tq+1 6 tp+1

n
tqþ1

i ¼ ntq

i �
1

Dtqntq
i viþ1 � Dtqntp

i�1vi�1

h i

Dx 2 2

n
tqþ1

i ¼ ntq

i � Dtq
oðnvÞ
ox
þ vi

on
ot

Dtp � s
Dx

� 	 ð12Þ
In this case, necessary Dtq 6 s 6 Dtp so Dtp � s = O(DtqDx), which gives consistency.

As a result the first-order asynchronous scheme is convergent. The local CFL condition hypothesis is essen-
tial for the convergence of the scheme.

2.7. Numerical diffusion

When writing second order Taylor development of the first-order asynchronous scheme and isolating the
numerical diffusion coefficient, one obtains for case two:
Dasync ¼ v2 Dtq

2
þ v

Dtp � s
� �2

sþ s2 Dtq � s
� �

2DtqDx
�

Dtp � Dtq

� �
s

Dtq
� Dx

2v

 !
ð13Þ
The first and last terms also appear when calculating the numerical diffusion coefficient for the synchronous
scheme giving rise to Dsync ¼ vDx

2
ð1� vDt

DxÞ. In contrast for the asynchronous scheme those two terms cancel each
other at least at first order in Dx when kCFL = 1. The third term is also second order in Dx, only the second
term as to be evaluated knowing that to first orderDtq . Dtp and ðDtq � sÞs 6 Dt2q

4
with 0 6 s 6 Dtq. Then the

asynchronous diffusion coefficient is lower than:
Dasync 6
vDx

8
ð14Þ
This means that if the velocity variation over the mesh is greater than 25%, the asynchronous scheme becomes
less diffusive than its synchronous equivalent. On a physical viewpoint the numerical diffusion in the synchro-
nous scheme can be seen as a consequence of the fact that in the area where the CFL number is lower than
one, information travels faster than it should. The asynchronous scheme cancels this effect to first order be-
cause information cannot go faster than the fastest local wave corresponding to the local CFL. However
the asynchronous scheme introduces diffusion due to the local desynchronization s (second term in Eq. (13)).

Notes:

� case one and three are corner cases. Nevertheless they lead to no numerical diffusion coefficient to first order
in Dx.
� the estimation of the asynchronous numerical diffusion coefficient correspond to the worst case s ¼ Dtq

2
.

Actually s keeps varying in time so the average value of numerical diffusion should be lower.

3. Test case: comparison with a classical synchronous method

A 1D advection equation is considered with periodic boundary conditions and unit advection velocity on a
non regular mesh over an unit domain:
on
ot
þ on

ox
¼ 0 ð15Þ
The N mesh point grid follows some polynomial law with parameter a defining the slope at x = 0.5
xi ¼ ð4� 4aÞ i� 1

N � 1
� 1

2

� �3

þ a
i� 1

N � 1
� 1

2

� �
þ 1

2
ð16Þ
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Test function is defined at t = 0 as follows:
Table
Ncell =

a

maxðdD
D

Easync
1 ð

Easync
1 ð

Esync
1

tasync
cpu ðt

tasync
cpu ðs

tsync
cpu , in

Rcpu(tr

Rcpu(sc
nðxÞ ¼
1 if jx� 1

2
j < 1

2

0:01 else



ð17Þ
A first-order in time second order in space (MUSCL, minmod limiter) scheme is being used. After 20 periods
results from the asynchronous scheme are compared with results from a standard synchronous method which
time step is equal to the global CFL condition. For the asynchronous scheme the local time step is equal to

DtðxÞ ¼ 0:49 Dx
vðxÞ, whereas the global time step is equal to Dt ¼ 0:49 min Dx

vðxÞ

n o
x
. Precision is evaluated with re-

spect to the analytical solution nref
i using the errors defined in (18) and (19).
Easync
1 ¼

P
ððnasync

i � nref
i Þ

2DxiÞP
ððnref

i Þ
2DxiÞ

ð18Þ

Esync
1 ¼

P
ððnsync

i � nref
i Þ

2DxiÞP
ððnref

i Þ
2DxiÞ

ð19Þ
Computation time performance is evaluated with the ratio Rcputime defined as: computation time of the syn-
chronous scheme divided by computation time of the asynchronous scheme. The sensitivity to both a and cell
number Ncell is presented on Tables 1 and 2. The maximum local space step variation

max dDx
Dx

� �
¼ maxi

Dxiþ1�Dxi

Dxi

� �
corresponding to the combination of a and Ncell is characteristic of the mesh dis-

tortion. Comparison is made between tree based asynchronous scheme, discrete time scheduled asynchronous
scheme and synchronous scheme. As an illustrative example one test case is plotted on Fig. 4.

Table 1 shows that for a fully homogeneous problem the asynchronous scheme behavior is equivalent to the
synchronous scheme but is slower by a factor of about 2.5 to 3.5 depending on sorting. For non uniform grids
the synchronous error Esync

1 increases quite faster than the asynchronous error Easync
1 . The asynchronous

scheme is less diffusive numerically, when using discrete time scheduling numerical diffusion is hardly wors-
ened. In the meantime the Rcpu ratio becomes more favorable to the asynchronous scheme. This means that
for a given mesh non uniformity the asynchronous method becomes more time effective than the synchronous
method. The asynchronous method reduces significantly numerical diffusion with respect to the synchronous
scheme even when using second order flux discretization in space.

Table 2 shows that when refining the mesh, the CPU time gain is lowered when using tree-based sorting
whereas it increases when using discrete time scheduling. Refining the mesh leads using the minimum time step
on fewer cells, thus reducing computations. One expects that the Rcpu ratio should grow. However tree-based
sorting cost increases in log(n) so the global balance is negative. To the contrary discrete time scheduling is not
affected by cell number and Rcpu increases. The asynchronous method is most effective for locally sharp min-
imum of the CFL condition. In other words it is well adapted for localized phenomenon or locally refined
grids and sharp gradient capture.
1
200

1 0.5 0.1 0.05 0.01

x
x Þ 0% 1.7% 5.3% 7.9% 18.8%

treeÞ 2.58 · 10�3 3.71 · 10�3 4.75 · 10�3 5. 35 · 10�3 5.20 · 10�3

schedÞ 2.58 · 10�3 4.67 · 10�3 4.82 · 10�3 5. 39 · 10�3 5.74 · 10�3

2.58 · 10�3 1.54 · 10�2 7.48 · 10�2 8. 39 · 10�2 9.04 · 10�2

reeÞ, in s 0.891 1.094 2.203 3.079 6.656

chedÞ, in s 0.609 0.859 1.703 2.391 5.453

s 0.265 0.406 1.641 3.187 15.360

ee) 0.297 0.371 0.745 1.035 2.308

hed) 0.435 0.473 0.964 1.333 2.817



Table 2
a = 0.01

Ncell 200 500 1000 2000 5000

max dDx
Dx

� �
18.8% 7.1% 3.5% 1.7% 0.7%

Easync
1 ðtreeÞ 5.20 · 10�3 2.19 · 10�3 1.08 · 10�3 4. 97 · 10�4 2.12 · 10�4

Easync
1 ðschedÞ 5.74 · 10�3 2.22 · 10�3 9.79 · 10�4 4.51 · 10�4 1. 92 · 10�4

Esync
1 9.04 · 10�2 4.99 · 10�2 3.15 · 10�2 1. 98 · 10�2 1.06 · 10�2

tasync
cpu ðtreeÞ, in s 7 45 190 813 5497

tasync
cpu ðschedÞ, in s 5 33 131 536 3270

tsync
cpu , in s 15 96 389 1570 9854

Rcpu(tree) 2.31 2.14 2.04 1.93 1.79

Rcpu(sched) 2.82 2.91 2.97 3.02 3.01

Fig. 4. Comparison after 20 periods for a = 0.01 and Ncell = 200.
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4. Application to gas discharge models

4.1. Model equations for a collisional discharge

A collisional discharge (i.e. where the charged particle mean free paths are much smaller than the discharge
dimensions) is well described by the following fluid equations (e is for electrons, i for ions):

� Continuity equation
one

ot
þ ~r �~Ce ¼ S ð20Þ

oni

ot
þ ~r �~Ci ¼ S ð21Þ
� Momentum equation in drift–diffusion form
~Ce ¼ leðEÞ �ne
~E � kBT e

e
~rne

� �
ð22Þ

~Ci ¼ liðEÞ ni
~E � kBT i

e
~rni

� �
ð23Þ
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� Source terms
S ¼ Sionization þ Srecombination ð24Þ
Sionization ¼ aðeEÞk~Cek ð25Þ
with eE ¼ �~E�~Ce

k~Cek
if �~E �~Ce > 0 and eE ¼ 0 otherwise
Srecombination ¼ �rneni ð26Þ

� Poisson’s Equation
~r � ð�~EÞ ¼ q ð27Þ
In this approach the electron energy equation is replaced by the so-called Local Field Approximation (LFA).
This supposes that the charged particle energy gain due to the local electric field is locally balanced by the
losses due to collisions. The consequences of the LFA are that transport and reaction coefficients such as
mobilities, ionization coefficients, etc at a given location and at a given time depend only on the electric field
at that position and that time. The dependence of these coefficients on the electric field is therefore the same as
under uniform field conditions, and is obtained by solving the steady state and homogeneous (no spatial gra-
dients) Boltzmann equation.
4.2. Using the asynchronous scheme for gas discharge modeling

4.2.1. Coupling transport with Poisson’s equation

Special care has to be taken in the treatment of the coupling between transport and Poisson’s equation for
the asynchronous scheme to be efficient in terms of computation time.

Numerical evaluation of the interface flux requires the knowledge of the local electric field to estimate the
drift of the charged species at the precise time of the flux refresh. the most straight forward strategy for an
explicit scheme would be to solve Poisson’s equation at each refresh time tag. This means that if the mesh
counts N cells, Poisson’s Equation shall be solved N times more often than for the synchronous scheme.
Because Poisson’s equation is fundamentally non local, this would make the asynchronous method totally
inefficient. The alternative is to solve Poisson’s equation asynchronously with a refresh rate deduced from
the total current conservation equation:
~r � �0

o~E
ot
þ ðnele þ niliÞe~E

 !
¼ 0 ð28Þ
The characteristic time appearing in this equation is the Maxwell time or dielectric relaxation time:
sM ¼ �0

ðneleþniliÞe
this time scale is characteristic for the dynamic of both potential and current in the system.

It is also a stability constraint on the time step for the explicit synchronous scheme.
Between two updates of the potential, the electric field values lag behind. Nevertheless this is sufficient to

obtain a numerically stable solution of the problem. However the solution of a stationary problem may become
‘‘noisy’’ because the aging of the electric field makes the flux react with delay leading to oscillations. Ionization
rate may also be over-estimated if the source term is based on an old electric field value, this may lead to large
current errors. A simple numeric filtering technique based on physical considerations has been developed to
estimate the local electric field variation rate o~E

ot . This estimate is then used to propagate the electric field.
The idea is to linearize the total current equation locally on a short time scale (Dt) at an equilibrium state

around which the current can be considered constant in time. It makes sense because solving Poisson’s equa-
tion reveals any global or ‘‘long term’’ variation of the total current. This time scale has obviously to be lower
than the dielectric relaxation time.
~J i;j
totalðtÞ ¼~J

i;j
totalðt � DtÞ ð29Þ

~J i;j
conductionðtÞ þ~J

i;j
displacementðtÞ ¼~J

i;j
conductionðt � DtÞ þ~J i;j

displacementðt � DtÞ ð30Þ
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A single flux refresh will lead to a small conduction current adjustment dJconduction. If the total current is con-
served, this small conduction current variation will be balanced by a small numerical displacement current
dJdisplacement in the opposite direction. The local electric field variation rate is deduced from this small numer-
ical displacement current.
o~Ei;j

ot
ðtÞ ¼ ½ðn

i;j
e li;j

e þ ni;j
ionl

i;j
ionÞe~Ei;j�t�Dt � ½ðni;j

e li;j
e þ ni;j

ionl
i;j
ionÞe~Ei;j�t

�0

ð31Þ
Note: in 1D the total current equation can be analytically solved see Appendix.

4.2.2. Local CFL condition for charged particles flux

For simplicity the local CFL condition is described on a regular mesh, but it can be easily generalized to any
mesh. In fact the local CFL condition has three contributions, the drift velocity |l(E)E|, the ‘‘diffusion veloc-

ity’’ 2DðEÞ
Dx , and the potential variation velocity linked to the local Maxwell time ðneleþniliÞe

�0
Dx. For a purely 1D

problem, one obtains the following CFL condition:
Dt ¼ kCFL
Dx

jlðEÞEj þ 2DðEÞ
Dx þ

ðneleþniliÞe
�0

Dx
ð32Þ
with kCFL a stability margin (kCFL = 0.99 for first-order scheme or kCFL = 0.49 for MUSCL scheme).
This expression is numerically quite different for the electrons and the ions (electron mobilities are usually

at least 100 times larger than the corresponding ion mobilities). This means that a lot of computation time can
be saved by using different time steps for the various species whereas in synchronous methods the ions flux
refresh rate are defined by the electrons dynamics. In low charge density areas, time steps of the various species
are decoupled, whereas in high charge density areas (plasma) these time steps tend to become independent of
the species. This is a consequence of the coupling of the different species through the electric field within the
plasma so the time steps must adapt to properly integrate the fast variations of the electric field within this
region even for the slow species.

In 2D the flux refresh time step has to insure that the CFL condition is not violated, which means that
information within the mesh propagates as fast as the fastest physical wave in the system in any direction. This

is done by defining: vx ¼ jlðEÞExj þ 2DðEÞ
Dx þ

ðneleþniliÞe
�0

Dx and vy ¼ jlðEÞEy j þ 2DðEÞ
Dx þ

ðneleþniliÞe
�0

Dy the information

velocities in x and y directions. In particular the CFL condition has to be respected diagonally to the mesh,
which means that the refresh rate of a flux has to take into account the most demanding value of the four
surrounding velocities in the orthogonal direction.

For instance in the x direction
Dtx ¼
DxDy

vxDy þ v?Dx
ð33Þ
The orthogonal velocity may be chosen as the maximum of the four surrounding values:
v? ¼ maxðvxþ;yþ
y ; vxþ;y�

y ; vx�;yþ
y ; vx�;y�

y Þ ð34Þ
However it is slightly more effective to take into account the direction of the updated flux. Hence only the
maximum orthogonal velocity leaving the upwind cell as to be considered.

4.2.3. Source term time stepping

The refresh rate of each reaction has to be chosen in order to follow this reaction dynamic.

� Ionization: Sionization ¼ aðeEÞk~Cek
– it depends on the electron flux, so it has to react at least as fast as the electron

flux.Dt ¼ Dl

jlðEÞEjþ2DðEÞ
Dl þ

ðneleþniliÞe
�0

Dl
with Dl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
– it leads to an exponential growth of density with a characteristic time Dt ¼ 1

aklEk. For this exponential to

be integrated not too coarsely, time step should be a fraction of this time. for instance: Dt ¼ 0:1
aklEk

The ionization time step shall be the minimum of these two conditions
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� Recombination: Srecombination = � rneni

– For cell k, the recombination refresh shall be less than Dtk ¼ 0:1
maxðnk

e ;n
k
i
Þ for precision with a maximum value

by default in the very low density areas.
– The recombination source term shall ‘‘see’’ the density dynamic due to ionization This can be done by

recomputing the recombination source term when ionization source term is refreshed.
4.2.4. Time steps limitation on local density variation

An additional constraint has been added to the time steps of both fluxes and source terms. For precision
purpose the local variation of any density should not exceed 10% during any time step.

4.2.5. Asynchronous algorithm for gas discharge

4.2.5.1. Initialization.
(1) Initialize all the density and fluxes.
(2) Initialize all the refresh time tags to the initial time.
(3) Compute the initial values of potential and electric field.
(4) Interpolate the transport coefficients at the initial time.

4.2.5.2. Proceed until the simulation time is completed.

(1) Find the most urgent flux or source term to be refreshed.
(2) tsimulation becomes this most urgent refresh time tag.
(3) For a flux

(a) update neighboring density of all species and the E field;
(b) interpolate the transport coefficient;
(c) store the previous conduction current;
(d) compute the new value of the flux (MUSCL for drift plus diffusion);
(e) compute the new conduction current;
(f) update the E field variation rate with the conduction current variation;
(g) update the variation rate of density;
(h) compute the local time step;
(i) replace the next refresh time tag into the tree or scheduler;
(j) update Maxwell time if required;

(k) update Poisson’s equation if required;
For source term

(a) update the local density of all species and the E field;
(b) interpolate the reaction coefficient;
(c) compute the new value of the source term;
(d) compute the local time step;
(e) replace the next refresh time tag into the tree or scheduler;

(4) If the next output time tag is lower than the next most urgent refresh time tag, build the solution at this
output time tag and store it.

4.3. Application to surface dielectric barrier discharge (DBD) at atmospheric pressure

4.3.1. Model description

Fig. 5 shows a typical DBD configuration that has been suggested for aerodynamic flow control. In a sur-
face DBD plasma actuator, a sinusoidal voltage is applied between the electrodes. Transient discharges
develop above the dielectric surface and momentum transfer between charged particles and neutral molecules
can generate a flow or modify the boundary layer of a flow along an airfoil (see [7–10]).

In this paper we consider a simple numerical experiment (as in [9]) in the 2D Cartesian geometry of Fig. 5
with a constant applied voltage between the electrodes. The electrode above the dielectric surface is the anode.
This numerical experiment is used to compare the asynchronous method with classical methods in the same



Fig. 5. Simulation domain for surface dielectric barrier discharge for flow control.
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conditions. The gas is pure Nitrogen at atmospheric pressure, and the electron and ion transport coefficients
are the same as in [9]. We assume that secondary electrons are generated by the dielectric surface under ion
impact, and that the charged particles charge the dielectric surface or recombine instantaneously, i.e. the sur-
face charge r on the dielectric is given by:
r ¼
Z t

0

eðC?i � C?e Þdt
The secondary electron coefficient, i.e. the number of electrons emitted by the dielectric surface for each ion
hitting the surface is supposed to be equal to 0.05 in the simulations. Secondary electron emission from the
surface plays an important role in this model and is responsible (as well as electron impact ionization of
the nitrogen molecule above the surface) for the maintenance and propagation of the discharge along the sur-
face. The conditions of the simulation are indicated below.

Simulation parameters:

� Gas: Nitrogen.
� Grid: 200 · 100, Cartesian geometry.
� Size: h = 150 lm w = 50 lm L = 400 lm.
� Dielectric relative permittivity: �r = 10.
� Electron temperature: Te = 104 K, ion temperature: Ti = 350 K.

� Thermal velocity: ve
th ¼

ffiffiffiffiffiffiffiffiffi
8kBT e

Pme

q
for electron and vi

th ¼
ffiffiffiffiffiffiffiffi
8kBT i

Pmi

q
.

� Flux scheme: Muscl (minmod limiter) for drift plus diffusion.
� Simulated time: 150 ns.

Boundary conditions:

� E field boundary left, right up: E^ = 0.
� E field boundary dielectric: �0E? � �r�0Edielectric

? ¼ r.
� Transport boundary left, right: C^ = 0.
� Transport boundary up: max(0,C^).
� Transport boundary dielectric electrons: Ce

? ¼ minð0; leE? � 1
4
ve

thÞ þ cmaxð0;�CiÞ.
� Secondary emission coefficient: c = 0.05.
� Transport boundary dielectric ions: Ci

? ¼ minð0;liE? � 1
4
vi

thÞ.
� Upper Electrode potential: Vanode = 1200 V.
� Lower Electrode potential: Vcathode = 0 V.

Low current or corona discharge phase:
For better current computation during transient phase such as sheath formation, Poisson’s equation has to

be solved according to an additional time constraint. This is required to correctly describe the steep current
rise phase. During these phases plasma has not formed yet so the electron density is low, only the ions density
is high. This means that Maxwell time is large, however there is already a distortion of the potential due to the
space charge or dielectric charging. A proper refresh constraint is to say that the variation of the space charge
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created electric field remains low with respect to the geometrical electric field. However this constraint is
unnecessary to insure the simulation stability. Consequently Poisson’s equation is solved periodically accord-
ing to Eq. (35) with V, the electrode voltage, L, a typical length of the system and k, a constant adjusted so that
Maxwell time is more restrictive in the plasma phase. An iterative conjugate gradient solver is used to compute
the potential.
Fig. 6.
and 60
DtPoisson ¼ min sM ; k
V �0

L2 oq
ot

 !
ð35Þ
4.3.2. Simulation results

The results of the simulation are displayed in Figs. 6–9.
The synchronous and asynchronous methods give very close results. We see in Figs. 6–8 that, because the

applied voltage is larger than the breakdown voltage, a plasma forms at the tip of the upper electrode, where
the electric field is larger. The electric field lines push the ions along the dielectric surface and toward the sur-
face. The field in the plasma drops and the field at the right end of the plasma is enhanced. At the right end of
the plasma an ion sheath forms, where ions are accelerated along and toward the surface, and generate sec-
ondary electrons when they impact on the surface. This mechanism makes the plasma propagate along the
surface, until the potential drop along the plasma become so large that the potential drop across the sheath
Comparison of equipotential lines for the asynchronous scheme (left) and the standard synchronous scheme (right) at 1.5, 15, 45
ns.



Fig. 7. Comparison of electron density (log(m�3)) for the asynchronous scheme (left) and the standard synchronous scheme (right) at 1.5,
15, 45 and 60 ns.
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is no longer sufficient to sustain the sheath. The velocity of the propagation along the sheath depends on sev-
eral parameters such as: applied voltage, ionization coefficient, secondary electron emission coefficient and ion
mobility.

Fig. 6 shows the sheath region propagation (the zone where the potential drop is concentrated). The
sheath propagation is slightly slower for the asynchronous scheme than for the synchronous scheme.
Excepted for the small propagation velocity difference, the density levels for both electrons and ions (see
Figs. 7 and 8) agree. Moreover Fig. 9 shows that both discharges fit ‘‘macroscopically’’ because the total
current collected at the lower electrode differs less than 5% between both methods. This is indeed a very
good fit knowing that ionization is an exponential phenomenon. In comparison the current computed with
the Scharfetter and Gummel semi-implicit scheme also shown on Fig. 9 is quite different. Tree-based and
discrete time scheduling asynchronous results where not plotted separately on Fig. 9 because the difference
lays within current noise.

As already mentioned, the results obtained with the asynchronous scheme are well in line with those
obtained with the synchronous method. Still the slight difference might be explained by a larger numerical
diffusion for the synchronous method. In fact larger numerical diffusion for ions would lead to a faster ion
transport to the surface, thus creating more electrons by secondary emission. This leads to a faster growth
of the plasma and a faster discharge development which also means a bigger current.



Fig. 8. Comparison of ion density (log(m�3)) for the asynchronous scheme (left) and the standard synchronous scheme (right) at 1.5, 15,
45 and 60 ns.

Fig. 9. Discharge current vs simulated time.
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Fig. 10. Rcputime vs simulated time for tree-based sorting and discrete time scheduling with the asynchronous scheme.

Fig. 11. Time steps (in log(s)) due to CFL condition for electrons (left) and ions (right).
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Fig. 12. Discharge current vs simulated time (grid 400 · 200).

Fig. 13. Discharge current vs simulated time near mesh convergence.
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The asynchronous method reduced computation time by more than 10, which is an impressive speed up.
Fig. 11 shows that this performance is largely due to the bigger time steps used for ion transport. One can
expect that the speed up should be even larger for air plasma simulation where the number of slow species
(ions, metastable) is higher. Fig. 10 shows that speed up is maximal in the very first instants because the
Maxwell time is still low so that Poisson’s equation is not resolved very often. Most of the CPU time is
then used for solving the transport equations. When plasma forms Poisson’s equation solving takes impor-
tant CPU time, this takes as much CPU time for synchronous and asynchronous methods. That is why
Rcputime drops after the very beginning then reaches a plateau phase during plasma propagation. After
100 ns the discharge has reached the right end of the simulation domain. At that time the dielectric surface
has been totally charged and there is no more potential difference in the fluid domain. Then the plasma
evolution is dominated by recombination and ambipolar diffusion. During this phase the minimum of
the CFL condition is less sharp and localized than during the discharge that is why Rcputime decreases again
after 100 ns. Only Rcputime order of magnitude is relevant. Its value is sensitive to various parameters such
as sharpness of the CFL minimum, Poisson’s solver convergence criterion, code optimization, CPU vs
memory access performance, etc...



Fig. 14. Grid spacing vs Debye’s length for various grids.
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4.3.3. Mesh convergence

When refining the mesh, the discharge current tends to decrease until convergence is reached around 4.5 A/
m peak current as shown on Figs. 12 and 13. The asynchronous scheme performs slightly better than the syn-
chronous scheme because it seems to reach convergence a little faster. This is probably due to a lower numer-
ical diffusion in ion transport in particular towards the dielectric surface which means fewer secondary
electron to sustain the plasma. The key parameter of this problem is electron multiplication within the cathode
sheath. Usually the cathode sheath has the size of about 10 Debye’s length. Fig. 14 shows that convergence is
reached when the grid spacing is about Debye’s length, this means that at least 10 cells are needed to correctly
describe the electron multiplication within the cathode sheath in such a discharge.

5. Conclusion

The present asynchronous scheme has proven to hold good numerical properties especially in terms of
numerical diffusion, theoretically with first order space discretization in Section 2.7 and numerically with sec-
ond order space discretization in Section 3. The scheme has been tested under various meshes (homogeneous
or inhomogeneous refinements) and is more accurate in these conditions than the classical synchronous
scheme. In terms of computation time, the asynchronous scheme is most time saving for locally sharp mini-
mum of the CFL condition. This technique is particularly adapted to multi-scale multi-species transport prob-
lems and leads to tremendous speed-up in calculation for inhomogeneous media in terms of CFL condition. In
the case of DBD for aerodynamic flow control an impressive computation time gain of about 10 has been
achieved. For many applications of atmospheric plasmas this method is especially effective for three reasons.
First the electric field exhibits steep gradient. Second lot of CPU time is saved by using specific time stepping
for the heavy particles. Third in the case of surface DBD the plasma is quite localized near the dielectric. This
technique is promising for various transport problems provided there are inhomogeneous in terms of CFL
condition. This applies to steep localized gradient but can also applied to locally refined meshes. In the field
of gas discharge modeling this new tool is well adapted for dielectric barrier discharge and corona discharges.
The method could also be used for 3D simulations.
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Appendix. Poisson/asynchronous transport coupling in 1D

In 1D the total current density is constant in the Ox direction over the domain and the current equation can
be analytically integrated and discretized (see [6]):
�0

o½V cathode � V anode�
ot

þ
X
ðnele þ niliÞe~E � Dx~ux ¼ J totalL ð36Þ
The total current density is then the mean value over the mesh of the conduction current plus the injected dis-
placement current in the electrodes. This mean value can be updated ‘‘locally’’ because only one flux has chan-
ged from the previous value, consequently it is a O(1) operation. Thus, the local variation rate of the electric
field for cell k can be deduced from the total current density at a low computational cost:
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oEk

ot
¼ J total � ½ðnele þ niliÞeE�k

�0

ð37Þ
After solving Poisson’s equation initially to obtain the electric field, it can be propagated locally by direct inte-
gration. However this process does not insure that the computed electric field remains rotational free and is
also integrating round-off errors. Consequently after a while the computed electric field diverges slowly from
the actual solution of Poisson’s equation. Practically it seems sufficient to solve again Poisson’s equation every
100 Maxwell time to filter off this error.
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